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The Navier-Stokes equations are solved numerically for the steady separated flow 
past a normal flat plate for Reynolds numbers in the range 0.1 < R < 20. Eddy 
dimensions together with the position of the vortex centre are presented and 
compared with the few other estimates and predictions available. Streamlines and 
equivorticity lines are also given. The main result of interest is the extremely good 
comparison with experimental results over this range of Reynolds numbers. The 
method of solution is based on an artificial time-dependent procedure using a 
distorted time. Results are given only for the steady-state flow. 

1. Introduction 
The primary objective of the present investigation is to obtain numerical solutions 

of the Navier-Stokes equations for the steady laminar flow of a viscous incompressible 
fluid past a normal flat plate. Although there has been considerable interest for many 
years in steady separated flows past various bluff bodies, very little has been reported 
to date on the special case of the normal flat plate. Of those authors who have 
considered the theoretical aspects of this problem, most have restricted their 
attention to the Oseen linearized equations. For example, using these simplified 
equations, Tomotika & Aoi (1953), Tameda & Miyagi (1962) and Miyagi (1968) have 
obtained estimates of the drag coefficient; Imai (1957) and Miyagi (1978) have 
predicted the critical Reynolds number at which separation first occurs, while the 
latter has additionally estimated the length of the standing vortex pair at low 
Reynolds numbers. The vortex size has also been estimated by Smith (1979) from 
asymptotic theory. Published experimental results on the problem are equally sparse. 
Batchelor (1967) has reproduced some results of Prandtl & Tietjens (1934) while more 
recent work has been carried out by Acrivos et al. (1968) and Taneda (1968). 

While there is some agreement between the theoretical and experimental results, 
the two approaches are not entirely consistent in their conclusions. For example, both 
Imai (1957) and Miyagi (1978) predict that there exists a vortex pair of vanishing 
thickness at vanishing Reynolds number, but point out that this is in conflict with 
the experimental work of Taneda (1968), whose results suggest that separation occurs 
a t  R = 0.4. Similarly, for higher Reynolds numbers, Acrivos et al. (1968) claim that 
their experimental results support an earlier theoretical model of Acrivos et al. (1965) 
in which the width of the closed wake attains a limit O( 1) with increasing Reynolds 
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FIGURE 1. The finite-difference grid. 

number. However, this is disputed by Smith (1979), who obtains the limit O(H) and 
suggests that the findings of Acrivos et al. (1968) are contaminated by the effects of 
the confining walls. It is therefore hoped that the present finite-difference solutions 
of the full Naviel-Stokes equations will provide additional information which will 
help in our understanding of this problem, at least for low and intermediate Reynolds 
numbers. 

One of the main difficulties - and a possible source of substantial error - associated 
with the numerical solution of the Navier-Stokes equations, for flow past any bluff 
body, is in the determination of the boundary conditions at the common solid/fluid 
interface. This has been discussed by several authors, including Hudson (1974) and 
Dennis & Hudson (1980), and applies whether the problem is formulated in terms 
of the stream function and vorticity distribution, or in terms of the primitive 
variables. In  either case, only the velocity components at the common interface are 
known from the physics of the problem, the other variables having to be approximated 
by some means or other. As this is likely to be particularly difficult for the normal 
flat plate, especially near the edges of the plate, it  would be extremely useful to have 
a method of solution that does not require knowledge of either the pressure or the 
vorticity on the solid/fluid interface. Fortunately such a method has been devised 
by Belotserkovskii, Gushchin & Shchennikov (1975) and involves the splitting of the 
time-dependent equations of motion as proposed by Harlow & Welch (1965). 
However, unlike the MAC method and its modifications, the finite-difference scheme 
of Belotserkovskii et al. requires only a knowledge of the velocity components on the 
solid surface: a modified form of this method is therefore used as the basis of the 
present computations. 
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Hence the problem was formulated in terms of the pressure p and the velocity 
components (u, v), and the time-dependent forms of these equations were solved until 
the steady-state solution was attained. However, as described later, it proved 
necessary to introduce an element of time distortion into these equations in order 
to preserve numerical stability, so the intermediate solutions of the time-dependent 
equations have no physical significance. As the flow is expected to vary most rapidly 
near to the edges of the plate the graded mesh of figure 1 was employed for the 
finite-difference approximations. 

Reynolds numbers in the range 0.1 < R < 20 were considered. In most cases 
converged solutions were obtained for different positions of the outer boundary, this 
being placed a t  successively increasing distances from the plate and its effect on the 
solution in the neighbourhood of the plate examined. Furthermore, a very strict exit 
tolerance was imposed on the iterative procedures in order to prevent premature 
termination of the calculations. 

In  this paper the results of the computations are presented in the form of 
streamlines and equivorticity lines, together with wake dimensions and the positions 
of the vortex centre, all at various Reynolds numbers up to 20. Some computational 
details are also given. The range of Reynolds numbers has been restricted to that 
over which there is reasonable certainty that the properties presented are accurate. 
No elaborate treatment of the boundary conditions at large distances from the plate 
is given, but the tests that have been carried out on the positioning of the outer 
boundary provide satisfactory accuracy checks. The treatment of flow normal to a 
flat plate by numerical methods is by no means simple owing to the presence of 
singularities in the vorticity and pressure at the edges. The method used here avoids 
the difficulties associated with these singularities. 

2. Basic equations 
With respect to rectangular Cartesian coordinates, the equations governing the flow 

au av -+- = 0, 
ax ay (3) 

where (u, v) are the velocity components, p the pressure, p the density and v the 
coefficient of kinematic viscosity. Equations (1) and (2) are written in conservation 
form. This is the basic form considered by Belotserkovskii et a1. (1975), and their 
method has been adapted directly to the present case, where elliptic coordinates are 
appropriate. We could equally formulate the equations appropriate to the non- 
conservation form corresponding to (1) and (2). The plate of length 21 is placed 
coincident with the y-axis with its centre at the origin and, at large distance, the fluid 
is assumed to be flowing with velocity U parallel to the x-axis. The problem is thus 
symmetrical about the x-axis, so only the upper half of the (2, y)-plane need be 
considered. Boundary conditions for u and v are then 

u=v=O on x=O,  
(4) u+U, v+O as x,y+oo. 
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It is convenient to make the transformation 

x = 1 sinht cosy, y = 1 cosh5 siny ( 5 )  

so that the upper half of the (x, y)-plane is transformed into the semi-inhite strip 
5 2 0 , O  < y < n. The plate then transforms into 5 = 0 with its upper edge at y = in. 
The upper half of the (5, 7)-plane contains the upstream region with the centre of 
the plate at y = n, while the lower half of the (5, 7)-plane contains the downstream 
region with the centre of the plate a t  y = 0. After all quantities have been made 
dimensionless, (1)-(3) becomes 

where 
#([, 7) = (cos2 y + sinh2 E);, 

I (u2 sinh 25 - 2uv sin 23 - v2 sinh 25) 

U +4 (cos 27 - cosh 25)} , 
24 

(u,v) are now the velocity components relative to the (6, 7)-coordinates and 
R = 2U1/v is the Reynolds number. The boundary conditions for u and u are now 

u = v = O  on[=O, 

v = O  o n y = O , n ,  ] (10) 
cosh 5 cos y sinh 5 sin y 

as E-+ 00. 
# 

, v+- 
# 

U+ 

It should,be noted that the function # ( E ,  y)  is very small near to the top of the 
plate, and so a(&, y), P(6, y) are very large in this region. Hence (6) and (7) are not 
readily amenable to numerical computation : indeed, preliminary numerical experim- 
ents confirmed this opinion. It was therefore decided to replace (6) and (7) by 
equations of the form au 1 c7p _ -  at - P{ -3 Z+a(t, II,} 9 
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where k is some suitable constant. Clearly (1  1) and (12) have the same steady-state 
solutions as (6) and (7), although the intermediate time-dependent solutions will of 
course be distorted. Noting that # ( E ,  7) + co as [-+ co it  was considered that taking 
k = 2 should ease the computational difficulties near the top of the plate without 
introducing others at large distance and this, in fact, proved to be the case. 

Thus equations (11) and (12) were solved in conjunction with (8) and (10) in the 
manner described below. 

3. Numerical analysis 

such that 
Let un, vn denote the velocity at time t = n6t and define functions ii(& q ) ,  V ( E ,  7) 

(13) u =  UR+1+8t$-, aP 
86 

Then 

Substituting (15) and (16) into (11)  and (12) with k = 2, the pressure terms are 
eliminated, giving ii = un+ag526t, (17) 

V = vn +/3p 6t. (18) 

Using (13) and (14) to eliminate u and v from (8) produces an equation for the pressure 
distribution which may be written in the form 

(It will be shown later that boundary conditions for p are not required.) 
Briefly, the procedure adopted for solving the problem is as follows. Assuming that 

u and v are known at time t = n 6t,  solutions for ii and V are obtained from (17) and 
(18). These are then substituted into the right-hand side of (19), which is then solved 
iteratively for p .  To complete the cycle, values of u and v at time t = (n+ 1)  6t are 
obtained from (13) and (14). Thus, starting from suitable initial approximations to 
u and v at time t = 0, the above procedure is repeated until steady-state solutions 
are obtained. 

In order to put the above procedure into practice, the region of integration 
0 6 7 < x ,  0 < 5 < Em is covered by a square mesh of side hand central finite-difference 
approximations to the differential equations employed in the manner of Harlow & 
Welch (1965). Thus the pressure p is defined at the centre of each cell, while the 
quantities u, ii, v and V are defined at the sides of each cell, as shown in figure 2. Here 
it is only necessary to give the finite-difference approximation to (19), which, in 
general, may be written (see figure 2) 

4 i  PI +4i  P2+& P ,  +$%Pa - (4: + 4; + 4: +#%I Po 
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5 =  hE/ 3 C O A 1  

FIQURE 2. The grid structure (p is defined at the points 0, 1 ,  2, 3, 4;  
u, fi at A and C; v, V at B and D). 

When p ,  is adjacent to a boundary (20) is modified as follows. Next to f l  = 0, p 3  and 
Uc are unknown. However, applying (13) on 6 = 0 gives 

- 6t 
uC = $C@O-P3)9 

h -  
from which 

and substituting in (20) leads to 

&P3 = @Po-& (#u)c, 

h 
~ ~ P , + ~ ; P , + ~ ~ P 4 - ( ~ : , + ~ ; + ~ 9 ) P O  = st [ ($U)A+($g)B- ($21)D1*  

Similarly, when p, is next to the outer boundary 
but, by applying (13) on 6 = &, we can reduce (20) to the form 

= [&, p ,  and UA are unknown, 

h 
#: P2 +#:P3+#kP4- (9; +#?!+&)PO = st [(du) - ( @ ) C  + (#@)B-  (dv)Dl, 

where the term q5u is evaluated on the boundary 6 = 
also that 

(see figure 2). Thus, noting 

p4  = po,  

p2 = p , ,  

GD = 0 
CB = 0 

when p ,  is adjacent to 7 = 0, 
when p o  is adjacent to 7 = R, 

it  can be seen that the only boundary conditions required are those for u and V. 

However, as mentioned in Roache (1976), it is convenient (but not essential) to 
restrict one nodal value of p at large distance upstream to zero, and this was done 
in the present calculations. 

Various methods are available to implement the conditions given in (10). After 
some numerical investigation, i t  was decided to use the free-stream conditions 
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explicitly on the upstream boundary, but on the downstream boundary to adopt the 
approach of Slotta et al. (1969). With reference to figure 2, values of v on 6 = p, are 
evaluated from known internal values, while those for u on = 6% are obtained from 
the equation of continuity as follows. Differentiating the second of (10) and applying 
the resulting equation on 6 = 6: leads to the approximation 

and applying (8) to each cell with centre on the line 6 = pm yields 

where 

4. Results and discussion 
Solutions were obtained for Reynolds numbers R = 0.1, 0.2, 0.5, 1, 5, 10 and 20. 

In each case the computations were started from the free-stream solution (i.e. the 
values of u and v were set equal to their free-stream value everywhere except on the 
plate itself) and terminated when 

where the summations include all nodal values of u and v respectively, and B is some 
preassigned exit tolerance. Initially, e was set equal to 
Examination of the respective solutions for u, v and p showed little or no change in 
the fifth significant figures, and so it was assumed that the steady-state solution had 
been attained by this stage and that further reduction of E was unnecessary. The 
solutions appeared to converge satisfactorily to their final values with the given 
assumption for the initial flow. Of course, once a final steady-state solution had been 
obtained for one Reynolds number, it  could be used as a starting approximation for 
the next. This alternative assumption for the initial flow was in fact investigated for 
one value of R, but the rate of convergence of the numerical procedure was not 
improved. 

Details of the main computational parameters are given in table 1. For all Reynolds 
numbers solutions were obtained with h = &K. In  order to assess the effect of grid 
size, an additional solution was computed for R = 10 with h = &. The latter 
calculations proved to be expensive in computer time, and, in view of the excellent 
agreement (see below) between the solutions on the different grids at this Reynolds 
number, no attempt was made to calculate fine-mesh solutions for other values of R. 

The choice of 6t was governed by the question of stability and determined by 
numerical experiment. As table 1 shows, the lower Reynolds number required the 
smallest values of 6t. Values of T, the total time taken to attain the converged 
steady-state solution, are also recorded in this table. 

The final column of table 1 indicates the maximum distance a t  which the outer 

and then reduced to 
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R 

0.1 
0.2 
0.5 
1 
5 

10 
10* 
20 

h 

26% 
&i= 

B= 
B= 
B= 
&= 
B= 

1 
so= 

6t 

0.0001 
0.0002 
0.0005 
0.001 
0.001 
0.001 
0.0005 
0.001 

T 
0.5314 
0.9986 
2.0385 
3.2780 

12.272 
15.527 

18.012 
9.4805 

TABLE 1 .  Computational parameters (see text)  

5: 
%= 
c 
f= 
f= c 
b= 
3 
i= 

boundary conditions were applied. It is well known that, when dealing with fluid flows 
past bluff bodies, the position of the outer boundary has to be chosen with care, as 
the solution in the neighbourhood of the bluff body can be adversely affected by both 
the type and the proximity of the outer boundary conditions. This problem has been 
studied in detail in the case of flow past a sphere by Hudson (1974). The main 
difficulty is in the calculation of the downstream flow, and it appears that the problem 
is less serious when the conditions on the downstream boundary are computed from 
the upstream solution. This is an important feature of the present calculations. 
Nevertheless, any outer boundary conditions should ideally be initially placed at some 
arbitrary point f,, and then the magnitude of 5, increased until there is no significant 
change in the solution near to the solid body. In practice, however, numerical 
instability can impose an upper bound f $  on the magnitude of E,, and this bound 
usually reduces as the Reynolds number increases. This was found to be the case in 
the current work, and, with the exception of the fine-mesh calculations for R = 10, 
the values of 6% given in table 1 coincide with the corresponding values of [E for 
R 2 5. For this reason, no attempt was made to extend the present calculations 
beyond R = 20. 

In  order to check that the maximum values of 6 ,  used were satisfactory, the 
following tests were carried out. At  R = 5 solutions were obtained with (i) f ,  = $7c 

and (ii) f ,  = in. It was noted that the dimensionless eddy length xl (obtained by 
dividing the actual eddy length by the half-plate length I )  change from 1.35 to 1.34. 
A t  R = 10 solutions were obtained with (i) 6, = 87c and (ii) f ,  = in: the corresponding 
values of xl were found to be 2.41 and 2.40 respectively. For R = 20 solutions were 
obtained with (i) 6, = 7c and (ii) 6, = in. This is equivalent to increasing the 
dimensionless distance x/Z from the relatively low value of 11.5 to 19.5, and in this 
case x1 changed from 4.43 to 4.65. These experiments suggest that the values of f ,  
employed were sufficiently large and also that the boundary conditions given in 
(21) and (22) are not unduly sensitive to the effects of boundary distance. 

At  this point it is convenient to mention the fine-mesh solution for R = 10, which 
produced a value of xi = 2.43 with f ,  = in. Comparing this with the value x1 = 2.41 
given above for the coarse mesh with the same boundary distance indicates the 
adequacy of the h = $7c grid size at  this Reynolds number, and suggests that the 
results obtained using this grid for R = 20 are at  least of reasonable accuracy. Further 
evidence for this view is available in table 2, where the results for the two different 
grid sizes at R = 10 indicate only very small changes in other properties of the flow 
in the wake with the change in grid size. 
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R 

0.1 
0.2 
0.5 
1 
5 

10 
10* 
20 

21 

0.11 
0.13 
0.27 
0.45 
1.34 
2.40 
2.43 
4.65 

Yw XC 

1 0.008 
1 0.032 
1 0.10 
1 0.20 
1 0.57 
1.12 0.88 
1.13 0.89 
1.35 1.44 

Yc 

0.92 
0.65 
0.57 
0.52 
0.56 
0.64 
0.65 
0.76 

$c 

-0.11 x 10-3 
-0.48 x 10-3 

-0.77 x lo-' 
-0.97 x lo-' 

-0.11 x 10-1 
-0.36 x lo-' 
-0.38 x lo-' 
-0.95 x lo-' 

TABLE 2. Wake dimensions and details of the vortex centre (see text) 

FIGURE 3 (u-c). For caption see next page. 
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$ = 0.8 

$ = 0.8 

$ = 0.8 

/ 

FIGURE 3. Streamlines for (a) R = 0.1 ; (a) 0.5; ( e )  1 (enclosed streamlines, starting from the centre, 
are $ = -0.0004, -0.0002); (d) 5 (enclosed streamlines are $ = -0.01, -0.005, -0.002); (e) 10 
(enclosed streamlines are $ = -0.03, -0.02, $ = -0.01); c f )  20 (enclosed streamlines are 
$ = -0.09, -0.05, -0.02, -0.01). 
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FIGURE 4. Equivorticity lines for (a) R = 1 ; (b)  5; (c) 10; ( d )  20. 

13 FLM 160 
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0 0.2 0.4 0.6 0.8 

11 Downstream face 

FIQURE 5. Vorticity distribution on the surface of the plate. 

From the steady-state solutions for u and w, the stream function $ and the vorticity 
g were calculated using the formulae 

(23) 

M ,  7) =-{---}+,{w 1 aw au 1 sinh2c+usin27}. 

4 a7 
Some checks on the calculation of the stream function were made by calculating $ 
from the velocity component u using an equation corresponding to (23). This was 
found to yield streamlines that were essentially the same as those calculated from 

Streamlines and equivorticity lines are presented in figures 3 and 4 respectively, 
while the vorticity on the surface of the plate is shown in figure 5.  The present 
calculations exhibit clearly the presence of an eddy behind the plate even at  the 
smallest Reynolds number considered (R = O . l ) ,  and this is in accordance with the 
predictions of Imai (1957) and Miyagi (1978) from Oseen theory. 

Eddy dimensions are given in table 2. The dimensionless eddy lengths xl are plotted 
against the Reynolds number for R 2 1 in figure 6, where they are compared with 

(23)- 



Viscous incompressible JEW past a normal JEat plate 381 

10 20 R 

FIQIJRE 6. Eddy length against Reynolds number; comparison with previous results: -, 
Smith; --- Acrivos et al.; 0, Taneda; 0,  Prandtl & Tietjens; +, present results. 

the results of other workers. The present results appear to be in excellent agreement 
with the experimental work of Taneda (taken from Miyagi 1978) and in reasonable 
agreement with that of Prandtl & Tietjens (1934) at R = 10. This latter experimental 
point is taken from Batchelor (1967, plate 4) and could be subject to some slight error 
of interpretation. The present calculated results are much lower than the theoretical 
estimates of Smith (1979). However, it is perhaps relevant to point out that, in the 
case of the circular cylinder, the eddy lengths estimated by Smith are also substantially 
higher than other computed results. The final comparison made in figure 6 is with 
the experimental results of Acrivos et al. (1968). From their table 1 (p. 29) we find 
the empirical formula xl = 0.194R 

in the present notation, and, although this is only strictly applicable at rather higher 
Reynolds numbers than those of the present investigation, the agreement with the 
present work at lower R is very favourable. Moreover, the experiments were carried 
out with a finite blockage ratio, which always shortens the wake marginally, so in 
reality the agreement could be even better than that suggested by figure 6. Finally, 
on the subject of eddy lengths, it should be noted that the estimates of xl for low 
R obtained by Miyagi (1978) from Oseen theory are significantly higher than those 
of both the present investigation and the experimental results of Taneda. 

With regard to the eddy half-width yw, the present results indicate that yw remains 
at approximately unity at least as far as R = 5. However, at R = 20, yw has increased 
to 1.35. Although the Reynolds numbers here are rather small, it could be noted in 
passing that this latter result tends to favour the theory of Smith (i.e. yw a &) rather 
than the model proposed by Acrivos et al. (i.e. yw = O(l ) ) ,  although in our case the 
proportionality constant is some 20 % lower than the value 0.385 of Smith. It is again 

13-2 
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encouraging to note reasonable agreement with the experimental results of Prandtl 
& Tietjens for yw. 

Table 2 also gives the coordinates (xc, y,) of the vortex centre and the magnitude 
of the stream function $c at this point. At R = 0.1 the vortex centre is very close 
to the top of the plate. However, as R increases from 0.1 to about 1, it moves away 
from the plate but nearer to the axis of symmetry. Between R = 1 and R = 20 the 
vortex centre continues to leave the plate, but also moves away from the axis of 
symmetry. Acrivos et al. observed experimentally that xc /x l  0.33 for R > 30, and 
it is interesting to note that our results at R = 20 give 0.31 for this ratio. Furthermore, 
the experimental work also suggested that yc/yw x 0.6 for R > 30, while our results 
at R = 20 give 0.56 for this value. Although the values of yw observed by Acrivos 
et al. will probably have been affected by the containing walls (see Smith 1979), the 
estimates of yc will also have been affected in a similar manner. Thus the satisfactory 
agreement of the ratio of these two quantities with our own result could still be a 
realistic comparison. The values of $, in table 2 are given primarily for reference in 
possible future work. 

Finally, one other comparison may be made at this stage with the observations 
of Acrivos et al. They observed that the backflow velocity - u/ U along the returning 
stagnation streamline was independent of R (for large R) and nearly constant ( 2 0.17) 
over a large portion of the wake. The present calculations show that this velocity 
lies between 0.16 and 0.18 over approximately one-third of the recirculating wake 
for R = 20, which is of the same order of magnitude as the experimental result. 

5. Conclusions 
The research described in this paper appears to be the first attempt to obtain 

numerical solutions of the Naviedtokes equations for the case of the normal flat 
plate. Reasonable care has been taken to ensure that the eddy dimensions have not 
been adversely affected either by the proximity of the outer boundary or by the 
premature termination of the iterative procedure. Indeed, with regard to the latter, 
one of the solutions was inadvertently iterated for almost twice the time required 
by the rather severe convergence test, but this had no effect whatsoever on the eddy 
dimensions. The general agreement of many features of the present results with those 
of experiments is satisfactory. The agreement of the calculated results for the two 
grid sizes h = &,n and &n at R = 10 is satisfactory enough to suggest that the 
calculations are accurate enough within the range of Reynolds numbers considered. 

It will be apparent that the method of solution outlined above has a number of 
flexible features which invite further experimentation and a few other possibilities 
have in fact been explored. For example, one version of the computer program was 
based on a slightly different analysis, which used k = 1 in (1 1) and (12), while another 
version of the program applied the free-stream conditions on the outer boundary in 
place of (21) and (22). Whilst these particular alternatives proved to be generally 
inferior to the scheme described here, it  is appreciated that the scheme finally 
adopted is not necessarily the most efficient. Nevertheless, the lack of necessity of 
calculating the vorticity and pressure on the plate is a very positive feature of the 
method. In a vorticity-stream-function formulation of this problem there would be 
great difficulties in calculating the vorticity at the edges of the plate. 

In  conclusion, the authors would like to record their gratitude to Mr D. J. Mullings 
for general programming assistance and in particular for providing the graph-plotting 
routines. 
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